Code: 23ES1102

I B.Tech - I Semester - Regular Examinations - JANUARY 2024

INTRODUCTION TO PROGRAMMING

(Common for ALL BRANCHES)

Duration: 3 hours Max. Marks: 70

Note: 1. This question paper contains two Parts A and B.

- 2. Part-A contains 10 short answer questions. Each Question carries 2 Marks.
- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each Question carries 10 marks.
- 4. All parts of Question paper must be answered in one place.

BL – Blooms Level

CO – Course Outcome

PART - A

		BL	CO
1.a)	Differentiate between the top-down and bottom-up problem-solving approaches.	L2	CO1
1.b)	Differentiate between algorithm and flow chart.	L2	CO1
1.c)	Differentiate between a "while" loop and a "do-while" loop, and provide an example of when you would choose one over the other.	L2	CO1
1.d)	Explain the difference between the "if" statement and the "if-else" statement in terms of their execution.	L2	CO1
1.e)	In programming, what is a string, and how is it typically represented in memory?	L1	CO1
1.f)	What is the purpose of declaring the size of an array when you create it in a programming language like C?	L1	CO1
1.g)	Differentiate between a pointer variable and a regular variable in terms of how they store data.	L2	CO1
1.h)	Explain the role of functions like 'malloc()' and 'free()' in dynamic memory allocation in C.	L2	CO1
1.i)	What is a function in programming, and why is it used?	L1	CO1
1.j)	Compare call-by-value with call-by-reference.	L2	CO1

PART - B

			BL	СО	Max. Marks	
	UNIT-I					
2	a)	Explain various operators in C.	L2	CO1	5 M	
	b)	Compare and contrast high-level programming	L2	CO1	5 M	
		languages and low-level programming				
		languages. Give examples of each and discuss				
		their respective advantages and disadvantages.				
	ı	OR	П		T	
3	a)	Discuss the concept of data types and their	L2	CO ₁	5 M	
		importance in programming. Provide examples				
		of situations where choosing the right data type				
		is crucial for program efficiency.				
	b)	$\boldsymbol{\varepsilon}$	L2	CO1	5 M	
		calculate the sum of first 10 natural numbers.				
		UNIT-II				
4	a)	Create a C program that employs a "while" loop	L3	CO2	5 M	
		to print all even numbers between 1 and 50, but				
		skips any numbers that are divisible by 6 using				
		the "continue" statement. Provide the code and				
		a detailed explanation.				
	b)	Write a C program that uses a "for" loop to find	L3	CO2	5 M	
		the first prime number between 100 and 200.				
		Implement the "break" statement to exit the				
		loop once the prime number is found.				
		OR	.	~ ~ 1		
5	a)	Discuss the advantages of using a "switch"	L2	CO1	5 M	
		statement over a series of "if" statements in				
		certain scenarios. Provide an example to				
	1 \	illustrate your point.	T 0	000	7.3.	
	(b)	Create a C program that continuously prompts	L3	CO2	5 M	
		the user to enter a positive integer until a				
		negative number is entered. Calculate and				
		display the sum of all the positive integers				
		entered by the user. Utilize a "while" loop,				

		anditional statements and the "break"					
		conditional statements, and the "break"					
		statement to terminate the loop when a negative					
		number is provided.					
		UNIT-III		,			
6	a)	Discuss the importance of string manipulation	L3	CO3	5 M		
		in programming, including tasks like					
		comparison, concatenation, and substring					
		extraction. Provide a code example in C that					
		demonstrates these string operations.					
	b)	Explain the advantages of using a two-	L2	CO2	5 M		
		dimensional array over a one-dimensional array					
		when working with tabular data or grids.					
		Provide real-world examples where two-					
		dimensional arrays are useful.					
		OR		1			
7	a)	Imagine you need to manage a list of customer	L3	CO2	5 M		
		names in a business application. Discuss the					
		advantages and disadvantages of using an array					
		for this purpose.					
	b)	You have an array of integers representing the	L3	CO3	5 M		
		daily temperatures for a week (index0: Sunday,					
		index1: Monday and so on). Write a C program					
		that finds and prints the day with the highest					
		temperature and the temperature itself.					
	1	<u> </u>	1				
0	6)	UNIT-IV Design a C program that reverges the elements	12	CO2	5 N /		
8	a)	Design a C program that reverses the elements	L3	CO3	5 M		
		of an integer array using pointers. Provide the					
		code and a step-by-step explanation of the					
	1. \	algorithm.	1.2	CO2	5 N 1		
	(a	Explain the concept of pointer arithmetic.	L3	CO3	5 M		
	Illustrate with an example program.						
	OR TARGOT SA						
9	a)	You are developing a program to manage a	L4	CO4	5 M		
		library's book collection. Design a C program					
		that uses a structure to represent book					
		information, such as title, author, and					

	b)	publication year. Implement functionalities to add and search for books in the collection. Include the code and explain how structures are used for this purpose. Discuss the significance of null pointers and the potential issues associated with using uninitialized pointers.	L2	CO3	5 M		
		ummtianzed pointers.					
		UNIT-V					
10	a)	Explain the concepts of variable scope and lifetime in a programming language and provide examples of local and global variables in C.	L2	CO3	5 M		
	b)	You are designing a program to manage a library's catalog. Create a C program that defines a function to add books to the catalog. The function should take book details as parameters and append to a file.	L4	CO4	5 M		
	OR						
11	a)	Define recursion. Develop a program to find factorial of a given number using recursion.	L3	CO3	5 M		
	b)		L3	CO3	5 M		